extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C22×C3⋊S3) = S3×C32⋊4Q8 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.1(C2^2xC3:S3) | 432,660 |
C6.2(C22×C3⋊S3) = (C3×D12)⋊S3 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.2(C2^2xC3:S3) | 432,661 |
C6.3(C22×C3⋊S3) = D12⋊(C3⋊S3) | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.3(C2^2xC3:S3) | 432,662 |
C6.4(C22×C3⋊S3) = C3⋊S3×Dic6 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.4(C2^2xC3:S3) | 432,663 |
C6.5(C22×C3⋊S3) = C12.39S32 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.5(C2^2xC3:S3) | 432,664 |
C6.6(C22×C3⋊S3) = C12.40S32 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.6(C2^2xC3:S3) | 432,665 |
C6.7(C22×C3⋊S3) = C32⋊9(S3×Q8) | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.7(C2^2xC3:S3) | 432,666 |
C6.8(C22×C3⋊S3) = C12.73S32 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.8(C2^2xC3:S3) | 432,667 |
C6.9(C22×C3⋊S3) = C12.57S32 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.9(C2^2xC3:S3) | 432,668 |
C6.10(C22×C3⋊S3) = C12.58S32 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.10(C2^2xC3:S3) | 432,669 |
C6.11(C22×C3⋊S3) = C4×S3×C3⋊S3 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.11(C2^2xC3:S3) | 432,670 |
C6.12(C22×C3⋊S3) = S3×C12⋊S3 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.12(C2^2xC3:S3) | 432,671 |
C6.13(C22×C3⋊S3) = C3⋊S3×D12 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.13(C2^2xC3:S3) | 432,672 |
C6.14(C22×C3⋊S3) = C12⋊S32 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.14(C2^2xC3:S3) | 432,673 |
C6.15(C22×C3⋊S3) = C2×S3×C3⋊Dic3 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.15(C2^2xC3:S3) | 432,674 |
C6.16(C22×C3⋊S3) = C62.90D6 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.16(C2^2xC3:S3) | 432,675 |
C6.17(C22×C3⋊S3) = C62.91D6 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.17(C2^2xC3:S3) | 432,676 |
C6.18(C22×C3⋊S3) = C2×Dic3×C3⋊S3 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.18(C2^2xC3:S3) | 432,677 |
C6.19(C22×C3⋊S3) = C62.93D6 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.19(C2^2xC3:S3) | 432,678 |
C6.20(C22×C3⋊S3) = C2×C33⋊8(C2×C4) | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.20(C2^2xC3:S3) | 432,679 |
C6.21(C22×C3⋊S3) = C2×C33⋊6D4 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.21(C2^2xC3:S3) | 432,680 |
C6.22(C22×C3⋊S3) = C2×C33⋊7D4 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.22(C2^2xC3:S3) | 432,681 |
C6.23(C22×C3⋊S3) = C2×C33⋊8D4 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.23(C2^2xC3:S3) | 432,682 |
C6.24(C22×C3⋊S3) = C2×C33⋊4Q8 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.24(C2^2xC3:S3) | 432,683 |
C6.25(C22×C3⋊S3) = S3×C32⋊7D4 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.25(C2^2xC3:S3) | 432,684 |
C6.26(C22×C3⋊S3) = C3⋊S3×C3⋊D4 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 72 | | C6.26(C2^2xC3:S3) | 432,685 |
C6.27(C22×C3⋊S3) = C62⋊23D6 | φ: C22×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 36 | | C6.27(C2^2xC3:S3) | 432,686 |
C6.28(C22×C3⋊S3) = C2×C12.D9 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 432 | | C6.28(C2^2xC3:S3) | 432,380 |
C6.29(C22×C3⋊S3) = C2×C4×C9⋊S3 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.29(C2^2xC3:S3) | 432,381 |
C6.30(C22×C3⋊S3) = C2×C36⋊S3 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.30(C2^2xC3:S3) | 432,382 |
C6.31(C22×C3⋊S3) = C36.70D6 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.31(C2^2xC3:S3) | 432,383 |
C6.32(C22×C3⋊S3) = D4×C9⋊S3 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 108 | | C6.32(C2^2xC3:S3) | 432,388 |
C6.33(C22×C3⋊S3) = C36.27D6 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.33(C2^2xC3:S3) | 432,389 |
C6.34(C22×C3⋊S3) = Q8×C9⋊S3 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.34(C2^2xC3:S3) | 432,392 |
C6.35(C22×C3⋊S3) = C36.29D6 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.35(C2^2xC3:S3) | 432,393 |
C6.36(C22×C3⋊S3) = C22×C9⋊Dic3 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 432 | | C6.36(C2^2xC3:S3) | 432,396 |
C6.37(C22×C3⋊S3) = C2×C6.D18 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.37(C2^2xC3:S3) | 432,397 |
C6.38(C22×C3⋊S3) = C23×C9⋊S3 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.38(C2^2xC3:S3) | 432,560 |
C6.39(C22×C3⋊S3) = C2×C33⋊8Q8 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 432 | | C6.39(C2^2xC3:S3) | 432,720 |
C6.40(C22×C3⋊S3) = C2×C4×C33⋊C2 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.40(C2^2xC3:S3) | 432,721 |
C6.41(C22×C3⋊S3) = C2×C33⋊12D4 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.41(C2^2xC3:S3) | 432,722 |
C6.42(C22×C3⋊S3) = C62.160D6 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.42(C2^2xC3:S3) | 432,723 |
C6.43(C22×C3⋊S3) = D4×C33⋊C2 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 108 | | C6.43(C2^2xC3:S3) | 432,724 |
C6.44(C22×C3⋊S3) = C62.100D6 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.44(C2^2xC3:S3) | 432,725 |
C6.45(C22×C3⋊S3) = Q8×C33⋊C2 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.45(C2^2xC3:S3) | 432,726 |
C6.46(C22×C3⋊S3) = (Q8×C33)⋊C2 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.46(C2^2xC3:S3) | 432,727 |
C6.47(C22×C3⋊S3) = C22×C33⋊5C4 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 432 | | C6.47(C2^2xC3:S3) | 432,728 |
C6.48(C22×C3⋊S3) = C2×C33⋊15D4 | φ: C22×C3⋊S3/C62 → C2 ⊆ Aut C6 | 216 | | C6.48(C2^2xC3:S3) | 432,729 |
C6.49(C22×C3⋊S3) = C2×C4×He3⋊C2 | central extension (φ=1) | 72 | | C6.49(C2^2xC3:S3) | 432,385 |
C6.50(C22×C3⋊S3) = C22×He3⋊3C4 | central extension (φ=1) | 144 | | C6.50(C2^2xC3:S3) | 432,398 |
C6.51(C22×C3⋊S3) = C23×He3⋊C2 | central extension (φ=1) | 72 | | C6.51(C2^2xC3:S3) | 432,561 |
C6.52(C22×C3⋊S3) = C6×C32⋊4Q8 | central extension (φ=1) | 144 | | C6.52(C2^2xC3:S3) | 432,710 |
C6.53(C22×C3⋊S3) = C3⋊S3×C2×C12 | central extension (φ=1) | 144 | | C6.53(C2^2xC3:S3) | 432,711 |
C6.54(C22×C3⋊S3) = C6×C12⋊S3 | central extension (φ=1) | 144 | | C6.54(C2^2xC3:S3) | 432,712 |
C6.55(C22×C3⋊S3) = C3×C12.59D6 | central extension (φ=1) | 72 | | C6.55(C2^2xC3:S3) | 432,713 |
C6.56(C22×C3⋊S3) = C3×D4×C3⋊S3 | central extension (φ=1) | 72 | | C6.56(C2^2xC3:S3) | 432,714 |
C6.57(C22×C3⋊S3) = C3×C12.D6 | central extension (φ=1) | 72 | | C6.57(C2^2xC3:S3) | 432,715 |
C6.58(C22×C3⋊S3) = C3×Q8×C3⋊S3 | central extension (φ=1) | 144 | | C6.58(C2^2xC3:S3) | 432,716 |
C6.59(C22×C3⋊S3) = C3×C12.26D6 | central extension (φ=1) | 144 | | C6.59(C2^2xC3:S3) | 432,717 |
C6.60(C22×C3⋊S3) = C2×C6×C3⋊Dic3 | central extension (φ=1) | 144 | | C6.60(C2^2xC3:S3) | 432,718 |
C6.61(C22×C3⋊S3) = C6×C32⋊7D4 | central extension (φ=1) | 72 | | C6.61(C2^2xC3:S3) | 432,719 |
C6.62(C22×C3⋊S3) = C2×He3⋊4Q8 | central stem extension (φ=1) | 144 | | C6.62(C2^2xC3:S3) | 432,384 |
C6.63(C22×C3⋊S3) = C2×He3⋊5D4 | central stem extension (φ=1) | 72 | | C6.63(C2^2xC3:S3) | 432,386 |
C6.64(C22×C3⋊S3) = C62.47D6 | central stem extension (φ=1) | 72 | 6 | C6.64(C2^2xC3:S3) | 432,387 |
C6.65(C22×C3⋊S3) = D4×He3⋊C2 | central stem extension (φ=1) | 36 | 6 | C6.65(C2^2xC3:S3) | 432,390 |
C6.66(C22×C3⋊S3) = C62.16D6 | central stem extension (φ=1) | 72 | 6 | C6.66(C2^2xC3:S3) | 432,391 |
C6.67(C22×C3⋊S3) = Q8×He3⋊C2 | central stem extension (φ=1) | 72 | 6 | C6.67(C2^2xC3:S3) | 432,394 |
C6.68(C22×C3⋊S3) = He3⋊5D4⋊C2 | central stem extension (φ=1) | 72 | 6 | C6.68(C2^2xC3:S3) | 432,395 |
C6.69(C22×C3⋊S3) = C2×He3⋊7D4 | central stem extension (φ=1) | 72 | | C6.69(C2^2xC3:S3) | 432,399 |